当前位置:首页 » 玫丹百香 » 丁香婷婷琪琪

丁香婷婷琪琪

发布时间: 2020-12-29 05:14:17

❶ 狠狠狠狠狠狠狠狠难........高手帮忙解答一下这三个不等式,谢了

(1)
设x,y,z为正实数。求证
x^2/(x^2+y^2+xy)+y^2/(y^2+z^2+yz)+z^2/(z^2+x^2+zx)>=1
证明 去分母得:
x^2*(y^2+z^2+yz)*(z^2+x^2+zx)+y^2*(z^2+x^2+zx)*(x^2+y^2+xy)+z^2*(x^2+y^2+xy)(y^2+z^2+yz)>=(y^2+z^2+yz)*(z^2+x^2+zx)*(x^2+y^2+xy)
展开化简为:
x^4*y^2+y^4*z^2+z^4*x^2>=xyz(zx^2+xy^2+yz^2)
<==> y^2*(x^2-yz)^2+x^2*(z^2-xy)^2+z^2*(y^2-zx)^2>=0
显然成立。
(2)
∑y(1-y^2)=∑y-∑y^3
≤1-1/9=8/9
x^4/[y(1-y^2)]+9y(1-y^2)/64≥3x^2/4(均值不等式)
∑{x^4/[y(1-y^2)]+9y(1-y^2)/64}≥∑3x^2/4
≥1/4
∑x^4/[y(1-y^2)]≥1/4-9∑y(1-y^2)/64
=1/4-(9/64)(8/9)
=1/4-1/8=1/8
不等式获证!
(3)
8x^8*(1-x^8)^8≤(8/9)^9,于是x(1-x^8)≤8^(8/9)/9,
从而x^3/(1-x^8)=x^4/x(1-x^8)≥9x^4/8^(8/9)
同理有y^3/(1-y^8)≥9y^4/8^(8/9)
z^3/(1-z^8)≥9z^4/8^(8/9)
三式相加即可
利用推广的柯西不等式有
(16/x^3+81/8y^3+1/27z^3)*(x+2y+3z)^3≥(2+3+1)^4,
从而16/x^3+81/8y^3+1/27z^3≥1296,
当x/(16/x^3)=2y/(81/8y^3)=3z/(1/27z^3)取等号
怎么只有5分?!(ˇ^ˇ〉

热点内容
牡丹江野猪 发布:2025-04-02 15:50:40 浏览:281
一朵老花 发布:2025-04-02 15:49:51 浏览:598
人参榕附石盆景 发布:2025-04-02 15:49:50 浏览:260
舒槿红花卉 发布:2025-04-02 15:40:50 浏览:761
金英花花语 发布:2025-04-02 15:38:28 浏览:222
l梅花双刀 发布:2025-04-02 15:31:33 浏览:264
玫瑰7评测 发布:2025-04-02 15:21:24 浏览:861
人物山茶花 发布:2025-04-02 15:20:37 浏览:841
万丛一朵花 发布:2025-04-02 15:04:29 浏览:995
百合盆栽寿命 发布:2025-04-02 14:53:55 浏览:548